I posted a lesson to accompany the IIHS "classic", Understanding Car Crashes a few years ago. If that post doesn't ring a bell, click here. Links to the video and lesson can be found in that original post.
A related story percolated up through my social media feed a few days ago. National Public Radio's Goats and Soda produced a story about the Latin New Car Assessment Program (NCAP). NCAP ran a crash test that pitted entry level Nissan vehicles against each other: The American Versa vs. the Mexican Tsura.
Crash Test Dummies Show The Difference Between Cars In Mexico And U.S.
Here's the video:
2015 Nissan Tsura vs. 2016 Nissan Versa
[Executive summary: The American passenger fares much better than Mexican passenger.]
When news of the test went public, Nissan announced that Nissan Mexico would discontinue sales of the Tsura in a few months.
It could be that the timing of Nissan's announcement coinciding with NCAP's test was... coincidental. That is a real possibility.
On a tangentially related oldie-but-goodie, some folks think cars from yesteryear were tanks that would decimate today's light-weight counterparts. An instuctive crash test pits a 2009 Impala against a 1959 Bel Air. Watch the video to see how that one turned out.
2009 Chevrolet Impala vs. 1959 Chevrolet Bel Air
If you're a classic car enthusiast, drive carefully!
The lesson I constructed includes an exercise in which students look up the IIHS safety test of the car they drive (or are commonly driven in).
High school physics education issues as seen by some American teachers: From content standards to critical thinking
Wednesday, November 23, 2016
Saturday, November 19, 2016
Inertia of Fall Leaves
This video has gone viral with good reason, its super cool.
In this slow mo video we see an amazing example of inertia as the bed of leaves remain as the net is lowered beneath them. What else can you discuss about with this video?
In this slow mo video we see an amazing example of inertia as the bed of leaves remain as the net is lowered beneath them. What else can you discuss about with this video?
Evolution of Physics Curriculum
As I NGSSify my curriculum I find myself removing some pieces of my curriculum that I've done for a long time. Sometimes they are replaced with better activities, sometimes they were dead weight, sometimes I'm sad to see them go. I'm not there yet but it is a process for which we still have several years as the NGSS assessments might be ready by 2018. You've got some time.
While making these curriculum choices I ask myself:
- Does this activity align with NGSS in content (addressing a Discipline Core Idea or Performance Expectation)?
- Or does it align with the Science & Engineering Skills?
- If not is it an essential skill to support NGSS acquisition? (i.e. graph making)
- Is it content that they need to support late NGSS content? (i.e. Newton's 1st and 3rd Laws)
As we approach the middle of the 2nd quarter I find that I am "behind" my past self by almost two weeks. This has meant moving Energy, Work & Power to second semester rather than cram it in first semester. My time crunch is due to a few big changes in my classroom that are still getting the kinks worked out:
1) This year I do not have required homework other than finishing labs. There are some "suggested homework" each night and the problems that I really like are worked into the class period. I suggest that struggling students do the homework each night, it is very briefly reviewed each day because less than a quarter of the students do it nightly. A lot of my students are in more than one AP class, sometimes I am their only non AP class, so if they are understanding the material they don't have to "waste" time doing homework if they don't need it.
2) So how do students know they should try the optional homework? Each week students take a low-stake weekly quiz based on the homework. That way they and I know how they well they are understanding the concepts. I grade their notebooks at the same time so that I can look over their labs for the week. Timing has been an issue so far. Sometimes the quizzes are too long and take most of the period. Absences have also delayed getting the quizzes passed back so in the future I think I will excuse the absent kids. This mean I don't have a chance to see how they are doing before the big assessment and the other quizzes in that category count more but it should improve the pass back time. I want students to have near immediate feedback on these formative assessments. I have been crudely tracking the standards addressed in each quiz in an Excel sheet but they have not been in a way that can be easily shared.
3) Students complete problems on whiteboards in small groups. This has been successful but sometimes not universally so depending on a few things. Some students dominate whiteboards just as they do labs so now I ask students to pass the marker on after each problem. Some students don't feel confident enough in their abilities to problem solve while others are watching. If the group is motivated to be "done" as fast as possible then they miss out on the conversations and growth to get something written ASAP. Yet some of the best problem solving think-out-loud collaborating discussions my students have ever had have taken place this year. They correct each other by citing previous activities, "Remember when she said this? Remember that one lab we did?".
Overall I like the changes and will be keeping them, with some revisions. I need to focus on making sure the weekly quizzes tackle common misconceptions just as much as calculation practice. I need to emphasize and normalize doing the suggested homework without making it seem required. It should feel like an opportunity for students; I want struggling students to want to do it to improve themselves. For whiteboards we have to set up community expectations that include all the students of the group at once and makes it a safe space for all of them to try, make mistakes and try again. And I have to work on my timing by probably further cutting some material. But that will be a topic for another post ...
While making these curriculum choices I ask myself:
- Does this activity align with NGSS in content (addressing a Discipline Core Idea or Performance Expectation)?
- Or does it align with the Science & Engineering Skills?
- If not is it an essential skill to support NGSS acquisition? (i.e. graph making)
- Is it content that they need to support late NGSS content? (i.e. Newton's 1st and 3rd Laws)
As we approach the middle of the 2nd quarter I find that I am "behind" my past self by almost two weeks. This has meant moving Energy, Work & Power to second semester rather than cram it in first semester. My time crunch is due to a few big changes in my classroom that are still getting the kinks worked out:
1) This year I do not have required homework other than finishing labs. There are some "suggested homework" each night and the problems that I really like are worked into the class period. I suggest that struggling students do the homework each night, it is very briefly reviewed each day because less than a quarter of the students do it nightly. A lot of my students are in more than one AP class, sometimes I am their only non AP class, so if they are understanding the material they don't have to "waste" time doing homework if they don't need it.
2) So how do students know they should try the optional homework? Each week students take a low-stake weekly quiz based on the homework. That way they and I know how they well they are understanding the concepts. I grade their notebooks at the same time so that I can look over their labs for the week. Timing has been an issue so far. Sometimes the quizzes are too long and take most of the period. Absences have also delayed getting the quizzes passed back so in the future I think I will excuse the absent kids. This mean I don't have a chance to see how they are doing before the big assessment and the other quizzes in that category count more but it should improve the pass back time. I want students to have near immediate feedback on these formative assessments. I have been crudely tracking the standards addressed in each quiz in an Excel sheet but they have not been in a way that can be easily shared.
3) Students complete problems on whiteboards in small groups. This has been successful but sometimes not universally so depending on a few things. Some students dominate whiteboards just as they do labs so now I ask students to pass the marker on after each problem. Some students don't feel confident enough in their abilities to problem solve while others are watching. If the group is motivated to be "done" as fast as possible then they miss out on the conversations and growth to get something written ASAP. Yet some of the best problem solving think-out-loud collaborating discussions my students have ever had have taken place this year. They correct each other by citing previous activities, "Remember when she said this? Remember that one lab we did?".
Overall I like the changes and will be keeping them, with some revisions. I need to focus on making sure the weekly quizzes tackle common misconceptions just as much as calculation practice. I need to emphasize and normalize doing the suggested homework without making it seem required. It should feel like an opportunity for students; I want struggling students to want to do it to improve themselves. For whiteboards we have to set up community expectations that include all the students of the group at once and makes it a safe space for all of them to try, make mistakes and try again. And I have to work on my timing by probably further cutting some material. But that will be a topic for another post ...
Friday, November 11, 2016
Did the Coyote Catch the Roadrunner?
Fans of my Roadrunner Physics website might be wondering this after the site went black in early October. My school changed website hosts, orphaning it. Fortunately, our IT department transferred it intact to our new hosting service, thus once again thwarting the Coyote's plans. You can click on the above hyperlink or copy and paste the URL:
http://www.lghs.net/about_us/staff_directory/teacher_pages/dan_burns/road_runner_physics/
They also transferred my internationally popular Science on the Simpsons website. You can click on the hyperlink or go to this URL:
http://www.lghs.net/about_us/staff_directory/teacher_pages/dan_burns/science_of_simpsons/
Unfortunately, some of the formatting of the clip descriptions is cut off. I hope to have this fixed soon. In the meantime, download your favorite clips so you don't have to worry about the site being inaccessible in the future. These clips are posted in accordance with the fair use provisions of the copyright act. They are for educational purposes, not entertainment. However, if your students are entertained by your creative educational use of them, that is OK.
I was inspired to create the Roadrunner website by Dean Baird's description of his use of Roadrunner cartoons to teach physics. He posted specific information about what episodes had useful clips. I used this and my own personal research to assemble the collection that I use on the first day of class. Roadrunner cartoons show my students that they already know a lot about physics. Roadrunner cartoons are humorous because they defy the laws of physics. When the students chuckle at a scene, they are revealing that they have an inherent sense of some of the rules that the universe operates under. Sometimes we focus too much on student misconceptions. Often these are incomplete thoughts that are closer to the actual physics concepts than we may realize when we focus on what is wrong about the ideas. One example is the student belief that a bullet receives a larger force than the gun. I find it more effective to acknowledge the student's belief that SOMETHING is different about the interaction. That something is of course the acceleration because of the difference in the mass.
The Science on the Simpsons website has its origins when I collected clips on a VHS tape to show my Earth/Space Science class back in the 90s. Other teachers would borrow it and I often had to hunt it down when I wanted to show it. The Coriolis Effect and Bart's Comet clips were the most popular. This motivated me to create digital clips from my Simpsons DVD collection and post them online for every teacher to use. Since then I have interacted with people from around the world who send me appreciation emails and ideas for new clips. The Simpsons are popular in Germany, Spain, Great Britain, and Australia. A few teachers used the site to support their master's thesis. Another teacher wrote an article about using the Simpsons to teach science that was published in the Spanish Newsweek. He runs a Science on the Simpsons Facebook page too. I even got a congratulatory note from one of the Simpsons executive producers:
"Hi, Dan. My brother-in-law works at Rockefeller U. and sent me your Simpsons/physics link. I love it and sent it to some of my colleagues who actually know something about science. Great work -- I hope people use it.
Best,
Rob LaZebnik
Co-Executive Producer
"The Simpsons"
Fox
10201 W. Pico Blvd.
LA, CA 90035
310369-4762"
I have been receiving emails from distraught teachers looking for the Science on the Simpsons and Roadrunner Physics websites. Please spread the word that they have moved. That would be "Excellent".
http://www.lghs.net/about_us/staff_directory/teacher_pages/dan_burns/road_runner_physics/
They also transferred my internationally popular Science on the Simpsons website. You can click on the hyperlink or go to this URL:
http://www.lghs.net/about_us/staff_directory/teacher_pages/dan_burns/science_of_simpsons/
Unfortunately, some of the formatting of the clip descriptions is cut off. I hope to have this fixed soon. In the meantime, download your favorite clips so you don't have to worry about the site being inaccessible in the future. These clips are posted in accordance with the fair use provisions of the copyright act. They are for educational purposes, not entertainment. However, if your students are entertained by your creative educational use of them, that is OK.
I was inspired to create the Roadrunner website by Dean Baird's description of his use of Roadrunner cartoons to teach physics. He posted specific information about what episodes had useful clips. I used this and my own personal research to assemble the collection that I use on the first day of class. Roadrunner cartoons show my students that they already know a lot about physics. Roadrunner cartoons are humorous because they defy the laws of physics. When the students chuckle at a scene, they are revealing that they have an inherent sense of some of the rules that the universe operates under. Sometimes we focus too much on student misconceptions. Often these are incomplete thoughts that are closer to the actual physics concepts than we may realize when we focus on what is wrong about the ideas. One example is the student belief that a bullet receives a larger force than the gun. I find it more effective to acknowledge the student's belief that SOMETHING is different about the interaction. That something is of course the acceleration because of the difference in the mass.
The Science on the Simpsons website has its origins when I collected clips on a VHS tape to show my Earth/Space Science class back in the 90s. Other teachers would borrow it and I often had to hunt it down when I wanted to show it. The Coriolis Effect and Bart's Comet clips were the most popular. This motivated me to create digital clips from my Simpsons DVD collection and post them online for every teacher to use. Since then I have interacted with people from around the world who send me appreciation emails and ideas for new clips. The Simpsons are popular in Germany, Spain, Great Britain, and Australia. A few teachers used the site to support their master's thesis. Another teacher wrote an article about using the Simpsons to teach science that was published in the Spanish Newsweek. He runs a Science on the Simpsons Facebook page too. I even got a congratulatory note from one of the Simpsons executive producers:
"Hi, Dan. My brother-in-law works at Rockefeller U. and sent me your Simpsons/physics link. I love it and sent it to some of my colleagues who actually know something about science. Great work -- I hope people use it.
Best,
Rob LaZebnik
Co-Executive Producer
"The Simpsons"
Fox
10201 W. Pico Blvd.
LA, CA 90035
310369-4762"
I have been receiving emails from distraught teachers looking for the Science on the Simpsons and Roadrunner Physics websites. Please spread the word that they have moved. That would be "Excellent".
Sunday, November 06, 2016
Before the Flood
I am grateful to Bree Barnett Dreyfuss and Dan Burns for keeping The Blog of Phyz vibrant while I hunker down with the development of basic (non-lab based) Earth Science curriculum and juggle four preps, two of which are AP.
Last Sunday, National Geographic premiered Leonardo DiCaprio's Before the Flood, a worldwide journey of discovery, doom, and hope relating to the current state of climate change science and politics. He's not putting this highly-produced, cinematically stunning production behind any paywalls/ DiCaprio means for you to see it.
National Geographic: Before the Flood HD (Complete: 1h35m) TV-14
As it happens, my Earth Science students are in the midst of their unit on Climate, to be followed by their unit on Human Impact. Al Gore's An Inconvenient Truth and Alanis Morissette's Global Warming: The Signs and the Science are over a decade old now.
So I tinkered and toiled to develop a set of video questions to keep the students engaged in this otherwise passive activity. The intent is that it's enough to keep them focused but not so much they fall behind during the screening. This is what I produced.
Before the Flood Video Questions (PDF)
Another nice (and recent) production is National Geographic's Bill Nye's Global Meltdown (feat. Arnold Schwarzenegger). I leave it to others do develop curriculum for that one.
Last Sunday, National Geographic premiered Leonardo DiCaprio's Before the Flood, a worldwide journey of discovery, doom, and hope relating to the current state of climate change science and politics. He's not putting this highly-produced, cinematically stunning production behind any paywalls/ DiCaprio means for you to see it.
National Geographic: Before the Flood HD (Complete: 1h35m) TV-14
As it happens, my Earth Science students are in the midst of their unit on Climate, to be followed by their unit on Human Impact. Al Gore's An Inconvenient Truth and Alanis Morissette's Global Warming: The Signs and the Science are over a decade old now.
So I tinkered and toiled to develop a set of video questions to keep the students engaged in this otherwise passive activity. The intent is that it's enough to keep them focused but not so much they fall behind during the screening. This is what I produced.
Before the Flood Video Questions (PDF)
Another nice (and recent) production is National Geographic's Bill Nye's Global Meltdown (feat. Arnold Schwarzenegger). I leave it to others do develop curriculum for that one.
Tuesday, November 01, 2016
Science Films
The Museum of Moving Images has created this "Science & Film" teacher guide with a list of short science-related films for the classroom organized by discipline.
From their introduction page:
"Filmmakers are making many different types of films and Museum of the Moving Image publishes Sloan Science & Film to enhance public understanding of science through film. This is a guide to 46 short narrative (fiction) films–all supported by the Alfred P. Sloan Foundation's nationwide film program–available for streaming in your classroom, which explore science and technology themes and characters. Our goal is to help teachers engage elementary, middle, and high school students in STEM learning.
- Films range from 4 to 33 minutes, averaging 20 minutes in length
- Each film correlates with National Standards, New York State Standards, and New York City Science Scope and Sequence (with a comprehensive appendix of all three attached), and can be customized to meet your needs
- Subjects include astronomy, biology, chemistry, ecology, evolution, genetics, mathematics, physics, psychology, technology, and the history of science
- Included with each film are possible questions to explore and science resources for further engagement"
The Physics portion starts on page 35 by the way.
From their introduction page:
"Filmmakers are making many different types of films and Museum of the Moving Image publishes Sloan Science & Film to enhance public understanding of science through film. This is a guide to 46 short narrative (fiction) films–all supported by the Alfred P. Sloan Foundation's nationwide film program–available for streaming in your classroom, which explore science and technology themes and characters. Our goal is to help teachers engage elementary, middle, and high school students in STEM learning.
- Films range from 4 to 33 minutes, averaging 20 minutes in length
- Each film correlates with National Standards, New York State Standards, and New York City Science Scope and Sequence (with a comprehensive appendix of all three attached), and can be customized to meet your needs
- Subjects include astronomy, biology, chemistry, ecology, evolution, genetics, mathematics, physics, psychology, technology, and the history of science
- Included with each film are possible questions to explore and science resources for further engagement"
The Physics portion starts on page 35 by the way.
Science & Engineering Practices poster
The Synopsis Outreach Foundation Sciencepalooza has worked with a graphic artist to create a visual of the NGSS Science & Engineering Practices poster. Its a great addition to your classroom and available here. A preview is below, I suggest you download it!
Subscribe to:
Posts (Atom)