KQED's Deep Look produced a nice piece on the structural color seen in iridescent colors in organisms.
What Gives the Morpho Butterfly Its Magnificent Blue? | Deep Look
And what good is a video clip without some questions to keep gawkers engaged?
YouTube Physics: Magnificent Blue @ TPT
High school physics education issues as seen by some American teachers: From content standards to critical thinking
Sunday, April 22, 2018
Tuesday, April 17, 2018
How to teach a class you've never taught before
Short answer: work hard.
Oh you wanted specifics? Keep reading.
One of the intricacies of education is that we can do the same thing year after year but nothing is the same or we can teach a completely different class and everything is still the same. Here are two examples:
I taught Physics every year for ten years. In that time period there have been new national and state standards implemented, two major bell schedule adjustments changing the number of minutes per day and week, furlough days have come and gone, new rallies and school traditions take instructional time, I have changed rooms four times, decided to forgo homework and gotten a new textbook twice. While I have taught "Physics" for ten years the class I would teach now is not the same as when I started.
I have also taught Conceptual Physics seven times in ten years. Several times there was a year in between in which I did not teach it. The population changed from freshmen only to freshmen and English Language Learners to open to all students to freshmen and special education only. The book has not changed but I have also had the same schedule and calendar changes I experienced for Physics. Because the class was meant to sere students that need additional support many of the pedagogical approaches and project based learning remains the same.
It can be hard to teach a course you have taught before with textbook or schedule or population or calendar changes. And then you may have to teach something completely different. Physics teachers often have to teach non-Physics courses because of traditionally lower enrollment in Physics classes compared to say Chemistry. In some schools they are the only Physics teacher and thus teach multiple levels. We tend to have more preps (different classes to teach) and change them up more often than other science disciplines. In your career you will probably at least once have to teach a brand-new-to-you course that makes you feel like a new teacher all over again. That's what happened to me this year with AP Physics C.
While I would love to say I met the challenge gracefully with my years of experience that was not always the case. Sometimes the workload crushed me. It definitely left my family neglected, our house in disorder and our lives chaotic. But as the end of the year approached I found that it got easier, not because the curriculum did but because I had developed a process. I found, through absolute trial and error, what helped me and what did not. I realized I went through the same steps in the same order at the start of each unit and it started to get (incrementally) easier.
And thus I decided to share, not because it is innovative or particularly amazing but because it could be helpful. I know someone out there, experienced or not, will be told in the coming weeks that they will be teaching (gulp) some class brand-new to them. It is daunting, makes you question whatever skills you thought you had and the workload downright sucks. So if some of this process helps you, great. If not, hopefully it helps lead you to your own.
Start with what you are given:
If you are inheriting the course from someone else you may find that you have also inherited a few filing cabinets worth of material. Or binders. Or shelves and shelves of "teacher resources." It is time consuming but worth it to go through this materials and do a first sort of what is and is not useful. Ditch the floppy disc versions of your textbook's teacher materials; ditch multiple copies of supplemental materials (unless there is more than one teacher). Check with your district about district copies of these resources, they may wish to consolidate extras in their warehouse for potential future use. You don't have to read every piece of paper left for you in a file cabinet now, you don't have to decide to adopt everything they left for you but you may want to keep it to give yourself the option.
As I moved into my new room this year there were eight total file cabinet drawers left for me for Physics and AP Physics. In my first sort I kept one copy of everything. I wanted to be able to read the labs he wrote but figured even if I decided to do the same ones I would probably be retyping it. I wanted to be able to see what his tests looked like, but knew I didn't need a class set. I kept a copy of his handwritten lecture notes so I could see how he implemented material, even though I planned to make powerpoints. I kept the manila folders, overheads and single sided paper to reuse as scrap paper. In the end, I filled four full size recycling bins with the paper I discarded, that was just the double-sided stuff. What I kept fit in two 4" binders in page protectors. I separated the stuff by unit, or at least by what I thought was by unit at the time. I was left with no digital files, except for uneditable pdfs I was able to download from his website before the district took it down.
As the year has progressed I started every unit going through what I was left. I looked over and digitized the lecture notes (you can copy it into a tablet or just scan it) to see how the material was presented before. If there was a worksheet that I wanted to use I would retype it as it was at first. I then did the worksheet myself and edited it how I wanted to for my own kids. Basically I took a look at what was done before as a guide, not to follow exactly but just for comparison. It provided a place to start, so I didn't have to start from scratch. There were plenty of worksheets, labs, etc. that I took this second look to and tossed aside. If you are lucky enough to start a new-to-you course that someone else teaches, start with everything they have. You can change things but it is invaluable to see how someone else teaches it, for better or worse.
Textbook resources:
While you may or may not use your textbook, electronic or print, your district has probably adopted one. Looking through it can be helpful if you have to learn or relearn material. I would read and take notes on each chapter, so that I could experience how the material was introduced just like my kids would. Most publishers have digital teacher resources now, either for download or on their website. My publisher has answer keys, lecture powerpoints, test banks, image galleries, simulations and more. So as to not re-invent the wheel, for each unit I started my lecture powerpoints using the textbook ones as a base. As the year progressed less and less of the original remained but it saved me time when I had so little. While using pre-made resources is not ideal, you should personalize your curriculum for yourself and your students, it is not the worst starting place. In later years of teaching the course you will probably use your own materials more and more.
Find reliable resources:
No class should be taught by textbook alone. Finding a few trusted and reliable resources for your class is important. This may be a professional networking site or another teacher's website or even social media. I found helpful materials on a wiki page, PrettyGoodPhysics, that will sadly need to relocate. There were a few YouTube Channels that provided consistently good tutorials by subject for myself and my students. Sometimes it would be for a different course (AP Physics 1, 2 or Honors Physics) but good video lessons are good video lessons regardless. I recommend Flipping Physics, Dan Fullerton's APlusPhysics, Mrs. Twu's video tutorials and AKLectures Physics series. If I needed to review a topic, or more importantly to learn what to emphasize for my students, it was very helpful watching other teachers teach it.
Social media turned out to be one of my greatest resources this year. I was able to find other physics teachers I did not know on Twitter and could follow or use hashtags like #APphysicsC to find resources by course. I was able to share data that didn't make sense and tag the equipment manufacturer who would often very quickly respond with suggestions. I once tagged @VernierST in the middle of a class period about weird looking data and got a response before my students left that period. They would continue to work with me for days as I tried to troubleshoot. Other teachers could jump on the thread and make suggestions or share sample data in the worst case scenario that nothing worked. I could share pictures of student work that made me scratch my head, asking more experienced teachers how I could prevent such incorrect problem solving in the future. As other teachers shared pictures of labs or demos they were doing I could save the picture for future use. I've even reached out to individuals to ask for their lab write-ups, ask follow-up questions or for advice. And they respond! Teachers usually like to help other teachers and many have been amazingly generous, sending me full curriculum guides, sample lecture notes, etc.
And perhaps most importantly, they don't judge much. On Twitter and on the College Board AP Physics C list serve I have posted problems that I cannot solve, or conceptual issues I still have that are preventing me from teaching it to my students. More experienced teachers have been able to respond with suggestions, solutions or alternate ways of approaching the problem. Everyone was patient as I usually started out my requests with "Since it's my first year teaching #APphysicsC..." And since I was putting that question out to anyone who could answer, people that could would and I would crowdsource some great solutions.
I also collected textbooks. Luckily we just adopted new AP textbooks so we had a textbooks from all the big publishers who had sent materials during the adoption process. I currently have six textbooks on my table, and I would often flip through all of them. For each chapter I would look through them to see if the example problems were different, how the material was grouped or arranged and to see what was emphasized. If my adopted textbook emphasized a type of problem that didn't appear in the other textbooks it helped confirm what was outside of the scope of the class.
Ask for help:
You know you should but it may still be difficult to admit that you don't know everything (yet) about your new course and you need help. Sometimes it was about the scope of the course, as my textbook includes a lot more than what is included on the AP Physics C exams. Sometimes the problem I tried to do out of the back of the chapter or on a worksheet I found was coming out wrong or I didn't have the answer to check it. Whatever it was I found that there were a few people I could ask for help. Most I knew personally through NCNAAPT but some I had met through my AP summer training or interactions online. I tried to spread out my questions, rotating through my "will help me" rolodex so that I did not take advantage of those willing to help me. I tried to figure it out by myself and not have to ask unless I was really stuck. My friends seemed to know this and did everything they could to help me when I asked.
Get trained:
I am a firm believer in proper science teaching professional development. Not all PD is good, don't get me wrong, but there are some consistently helpful training opportunities I always enjoy. For new teachers PTSOS and the Exploratorium's New teacher Institute of course. The national AAPT Summer and Winter meetings and your local AAPT meetings are full of the best-of-the-best resources shared among physics teachers. I find that the down-time in between workshops with other teachers can spark the best conversations and lead to lots of good shared ideas.
If the new-to-you course is an College Board Advanced Placement one you can also take a sanctioned AP training. They can be pricey but are often offered throughout the year. I had a hard time finding summer training for AP Physics C last year and had to travel to Texas to attend one. While it was helpful, I did not feel that one was enough to be comfortable teaching the course. I asked my district to send me to another one this summer and I'm crossing my fingers that there is more to learn.
Practice Practice Practice:
I found that, much like my students, I benefited from lots of practice. While I wouldn't do every problem in my textbook, I would probably work through twice as many as my students. I tried to do every conceptual question and did the ones that another AP Physics teacher using my book assigned. I figured that this more experienced teacher had probably already weeded out the problems that were too hard or awkward and these problems would be good for my students. Sometimes these still tripped me up and I decided early on that if I couldn't do the problem, I would not assign it to my students. By doing more problems I was able to see patterns in how the questions were asked or what they were asking for as well as improve my own problem solving technique. This also meant when it came to assessments I had more problems that I could solve then I had given to students to use.
One particularly helpful resource was an online workbook of released AP multiple choice and free response problems arranged by subject. This meant that I could look through the simple harmonic motion section and see all the problems ever asked on the AP exam about SHM. I could pick and choose the problems I wanted, combined with the textbook's test bank, to make my own tests. Sometimes working through all these extra problems seemed time consuming, especially if I wasn't going to assign them all, but overall it really helped my understanding.
Get organized:
This is easier for some than others, and I am not saying that everyone has to be a super clean desk all the time, but, if you are collecting new resources for a new class that doesn't do you any good if you can't find the cool thing your saved when the time comes. The easiest method is to create a folder for each unit and throw it all in there. At the start of the year I made a folder for each section of the AP Physics C objectives so that when I found a few resource I could sort it appropriately. This meant that prior to the start of the unit I would have maybe half a dozen to a dozen files before I really started to build the unit. As the unit progressed I would sort what I was using from the extra resources I wanted to keep from the assessments I would give. Since I tended to save everything I could get my hands on I would end up with a lot of files. For example, I started my magnetic field and forces unit with 5 digital files and two weeks later, before I've even written their test, I have 150.
Take care of you:
At the risk of sounding like a spa commercial, you need to take time out for yourself. Even though I was part time, developing new curriculum this year became my life. It was not unusual for me to work 12 hours a day, as in actual sitting down work, not just being awake for that long. I neglected my hobbies, cleaning, my health, because the work "had to get done." It will be the most work you've done outside of your first year to develop a new curriculum. Apologize to your family up front. However, do not lose yourself to it. Prior to this year I was trying to work on life-work balance and I failed miserably this year. I wish I had taken more breaks, spent more time with my kids, etc. but I didn't know how to get all my work done and do everything else. It got better as I developed this process and that's why I'm sharing. Hopefully having a game plan will help you develop your new-to-you course without drowning in your work. A burnt out teacher is not a helpful teacher.
To summarize:
1. Start with what you are given.
2. Try textbook resources.
3. Find reliable resources
4. Ask for help
5. Get trained
6. Practice Practice Practice
7. Get organized
8. Take care of you.
That's it, just 8 easy steps! (Totally sarcastic by the way)
It will be tough but by trying to focus on what I knew worked for me, I've almost gotten through it. As I can almost see the bright light on the other side believe me when I say you will too. Good luck!
Oh you wanted specifics? Keep reading.
One of the intricacies of education is that we can do the same thing year after year but nothing is the same or we can teach a completely different class and everything is still the same. Here are two examples:
I taught Physics every year for ten years. In that time period there have been new national and state standards implemented, two major bell schedule adjustments changing the number of minutes per day and week, furlough days have come and gone, new rallies and school traditions take instructional time, I have changed rooms four times, decided to forgo homework and gotten a new textbook twice. While I have taught "Physics" for ten years the class I would teach now is not the same as when I started.
I have also taught Conceptual Physics seven times in ten years. Several times there was a year in between in which I did not teach it. The population changed from freshmen only to freshmen and English Language Learners to open to all students to freshmen and special education only. The book has not changed but I have also had the same schedule and calendar changes I experienced for Physics. Because the class was meant to sere students that need additional support many of the pedagogical approaches and project based learning remains the same.
It can be hard to teach a course you have taught before with textbook or schedule or population or calendar changes. And then you may have to teach something completely different. Physics teachers often have to teach non-Physics courses because of traditionally lower enrollment in Physics classes compared to say Chemistry. In some schools they are the only Physics teacher and thus teach multiple levels. We tend to have more preps (different classes to teach) and change them up more often than other science disciplines. In your career you will probably at least once have to teach a brand-new-to-you course that makes you feel like a new teacher all over again. That's what happened to me this year with AP Physics C.
While I would love to say I met the challenge gracefully with my years of experience that was not always the case. Sometimes the workload crushed me. It definitely left my family neglected, our house in disorder and our lives chaotic. But as the end of the year approached I found that it got easier, not because the curriculum did but because I had developed a process. I found, through absolute trial and error, what helped me and what did not. I realized I went through the same steps in the same order at the start of each unit and it started to get (incrementally) easier.
And thus I decided to share, not because it is innovative or particularly amazing but because it could be helpful. I know someone out there, experienced or not, will be told in the coming weeks that they will be teaching (gulp) some class brand-new to them. It is daunting, makes you question whatever skills you thought you had and the workload downright sucks. So if some of this process helps you, great. If not, hopefully it helps lead you to your own.
Start with what you are given:
If you are inheriting the course from someone else you may find that you have also inherited a few filing cabinets worth of material. Or binders. Or shelves and shelves of "teacher resources." It is time consuming but worth it to go through this materials and do a first sort of what is and is not useful. Ditch the floppy disc versions of your textbook's teacher materials; ditch multiple copies of supplemental materials (unless there is more than one teacher). Check with your district about district copies of these resources, they may wish to consolidate extras in their warehouse for potential future use. You don't have to read every piece of paper left for you in a file cabinet now, you don't have to decide to adopt everything they left for you but you may want to keep it to give yourself the option.
As I moved into my new room this year there were eight total file cabinet drawers left for me for Physics and AP Physics. In my first sort I kept one copy of everything. I wanted to be able to read the labs he wrote but figured even if I decided to do the same ones I would probably be retyping it. I wanted to be able to see what his tests looked like, but knew I didn't need a class set. I kept a copy of his handwritten lecture notes so I could see how he implemented material, even though I planned to make powerpoints. I kept the manila folders, overheads and single sided paper to reuse as scrap paper. In the end, I filled four full size recycling bins with the paper I discarded, that was just the double-sided stuff. What I kept fit in two 4" binders in page protectors. I separated the stuff by unit, or at least by what I thought was by unit at the time. I was left with no digital files, except for uneditable pdfs I was able to download from his website before the district took it down.
As the year has progressed I started every unit going through what I was left. I looked over and digitized the lecture notes (you can copy it into a tablet or just scan it) to see how the material was presented before. If there was a worksheet that I wanted to use I would retype it as it was at first. I then did the worksheet myself and edited it how I wanted to for my own kids. Basically I took a look at what was done before as a guide, not to follow exactly but just for comparison. It provided a place to start, so I didn't have to start from scratch. There were plenty of worksheets, labs, etc. that I took this second look to and tossed aside. If you are lucky enough to start a new-to-you course that someone else teaches, start with everything they have. You can change things but it is invaluable to see how someone else teaches it, for better or worse.
Textbook resources:
While you may or may not use your textbook, electronic or print, your district has probably adopted one. Looking through it can be helpful if you have to learn or relearn material. I would read and take notes on each chapter, so that I could experience how the material was introduced just like my kids would. Most publishers have digital teacher resources now, either for download or on their website. My publisher has answer keys, lecture powerpoints, test banks, image galleries, simulations and more. So as to not re-invent the wheel, for each unit I started my lecture powerpoints using the textbook ones as a base. As the year progressed less and less of the original remained but it saved me time when I had so little. While using pre-made resources is not ideal, you should personalize your curriculum for yourself and your students, it is not the worst starting place. In later years of teaching the course you will probably use your own materials more and more.
Find reliable resources:
No class should be taught by textbook alone. Finding a few trusted and reliable resources for your class is important. This may be a professional networking site or another teacher's website or even social media. I found helpful materials on a wiki page, PrettyGoodPhysics, that will sadly need to relocate. There were a few YouTube Channels that provided consistently good tutorials by subject for myself and my students. Sometimes it would be for a different course (AP Physics 1, 2 or Honors Physics) but good video lessons are good video lessons regardless. I recommend Flipping Physics, Dan Fullerton's APlusPhysics, Mrs. Twu's video tutorials and AKLectures Physics series. If I needed to review a topic, or more importantly to learn what to emphasize for my students, it was very helpful watching other teachers teach it.
Social media turned out to be one of my greatest resources this year. I was able to find other physics teachers I did not know on Twitter and could follow or use hashtags like #APphysicsC to find resources by course. I was able to share data that didn't make sense and tag the equipment manufacturer who would often very quickly respond with suggestions. I once tagged @VernierST in the middle of a class period about weird looking data and got a response before my students left that period. They would continue to work with me for days as I tried to troubleshoot. Other teachers could jump on the thread and make suggestions or share sample data in the worst case scenario that nothing worked. I could share pictures of student work that made me scratch my head, asking more experienced teachers how I could prevent such incorrect problem solving in the future. As other teachers shared pictures of labs or demos they were doing I could save the picture for future use. I've even reached out to individuals to ask for their lab write-ups, ask follow-up questions or for advice. And they respond! Teachers usually like to help other teachers and many have been amazingly generous, sending me full curriculum guides, sample lecture notes, etc.
And perhaps most importantly, they don't judge much. On Twitter and on the College Board AP Physics C list serve I have posted problems that I cannot solve, or conceptual issues I still have that are preventing me from teaching it to my students. More experienced teachers have been able to respond with suggestions, solutions or alternate ways of approaching the problem. Everyone was patient as I usually started out my requests with "Since it's my first year teaching #APphysicsC..." And since I was putting that question out to anyone who could answer, people that could would and I would crowdsource some great solutions.
I also collected textbooks. Luckily we just adopted new AP textbooks so we had a textbooks from all the big publishers who had sent materials during the adoption process. I currently have six textbooks on my table, and I would often flip through all of them. For each chapter I would look through them to see if the example problems were different, how the material was grouped or arranged and to see what was emphasized. If my adopted textbook emphasized a type of problem that didn't appear in the other textbooks it helped confirm what was outside of the scope of the class.
Ask for help:
You know you should but it may still be difficult to admit that you don't know everything (yet) about your new course and you need help. Sometimes it was about the scope of the course, as my textbook includes a lot more than what is included on the AP Physics C exams. Sometimes the problem I tried to do out of the back of the chapter or on a worksheet I found was coming out wrong or I didn't have the answer to check it. Whatever it was I found that there were a few people I could ask for help. Most I knew personally through NCNAAPT but some I had met through my AP summer training or interactions online. I tried to spread out my questions, rotating through my "will help me" rolodex so that I did not take advantage of those willing to help me. I tried to figure it out by myself and not have to ask unless I was really stuck. My friends seemed to know this and did everything they could to help me when I asked.
Get trained:
I am a firm believer in proper science teaching professional development. Not all PD is good, don't get me wrong, but there are some consistently helpful training opportunities I always enjoy. For new teachers PTSOS and the Exploratorium's New teacher Institute of course. The national AAPT Summer and Winter meetings and your local AAPT meetings are full of the best-of-the-best resources shared among physics teachers. I find that the down-time in between workshops with other teachers can spark the best conversations and lead to lots of good shared ideas.
If the new-to-you course is an College Board Advanced Placement one you can also take a sanctioned AP training. They can be pricey but are often offered throughout the year. I had a hard time finding summer training for AP Physics C last year and had to travel to Texas to attend one. While it was helpful, I did not feel that one was enough to be comfortable teaching the course. I asked my district to send me to another one this summer and I'm crossing my fingers that there is more to learn.
Practice Practice Practice:
I found that, much like my students, I benefited from lots of practice. While I wouldn't do every problem in my textbook, I would probably work through twice as many as my students. I tried to do every conceptual question and did the ones that another AP Physics teacher using my book assigned. I figured that this more experienced teacher had probably already weeded out the problems that were too hard or awkward and these problems would be good for my students. Sometimes these still tripped me up and I decided early on that if I couldn't do the problem, I would not assign it to my students. By doing more problems I was able to see patterns in how the questions were asked or what they were asking for as well as improve my own problem solving technique. This also meant when it came to assessments I had more problems that I could solve then I had given to students to use.
One particularly helpful resource was an online workbook of released AP multiple choice and free response problems arranged by subject. This meant that I could look through the simple harmonic motion section and see all the problems ever asked on the AP exam about SHM. I could pick and choose the problems I wanted, combined with the textbook's test bank, to make my own tests. Sometimes working through all these extra problems seemed time consuming, especially if I wasn't going to assign them all, but overall it really helped my understanding.
Get organized:
This is easier for some than others, and I am not saying that everyone has to be a super clean desk all the time, but, if you are collecting new resources for a new class that doesn't do you any good if you can't find the cool thing your saved when the time comes. The easiest method is to create a folder for each unit and throw it all in there. At the start of the year I made a folder for each section of the AP Physics C objectives so that when I found a few resource I could sort it appropriately. This meant that prior to the start of the unit I would have maybe half a dozen to a dozen files before I really started to build the unit. As the unit progressed I would sort what I was using from the extra resources I wanted to keep from the assessments I would give. Since I tended to save everything I could get my hands on I would end up with a lot of files. For example, I started my magnetic field and forces unit with 5 digital files and two weeks later, before I've even written their test, I have 150.
Take care of you:
At the risk of sounding like a spa commercial, you need to take time out for yourself. Even though I was part time, developing new curriculum this year became my life. It was not unusual for me to work 12 hours a day, as in actual sitting down work, not just being awake for that long. I neglected my hobbies, cleaning, my health, because the work "had to get done." It will be the most work you've done outside of your first year to develop a new curriculum. Apologize to your family up front. However, do not lose yourself to it. Prior to this year I was trying to work on life-work balance and I failed miserably this year. I wish I had taken more breaks, spent more time with my kids, etc. but I didn't know how to get all my work done and do everything else. It got better as I developed this process and that's why I'm sharing. Hopefully having a game plan will help you develop your new-to-you course without drowning in your work. A burnt out teacher is not a helpful teacher.
To summarize:
1. Start with what you are given.
2. Try textbook resources.
3. Find reliable resources
4. Ask for help
5. Get trained
6. Practice Practice Practice
7. Get organized
8. Take care of you.
That's it, just 8 easy steps! (Totally sarcastic by the way)
It will be tough but by trying to focus on what I knew worked for me, I've almost gotten through it. As I can almost see the bright light on the other side believe me when I say you will too. Good luck!
Saturday, April 14, 2018
Resources ... In Color!
You have to have lived many summers to remember when "In Color" was appended to television show titles to distinguish them from humdrum black and white programs. Leslie Neilson spoofed the practice, along with everything relating to 1960s police dramas his Police Squad!.
I added color to my curriculum a few years ago. It began with writing a lab around PhET's "Color Vision" simulation coupled with pocket microscopes. The lab is called "Pixel Peeping" and it's a big eye-opener (!), especially when they look at the phosphors lighting up in yellow.
Next, I wrote an add-on activity called "Fun with Colors!" An interesting exploration of color mixing.
Then I saw this groovy video, and showed it in conjunction with the color activities. Biological pixels!
Science Friday: Where's the Octopus?
Then I saw this wee gem from Steve Mould, and thought to add it, too. How does your brain average red and blue when your green cone is silent?
The Royal Institution: Colour Mixing: The Mystery of Magenta
But I bristle at the notion of just showing a video or asking students to watch a video without having questions attached to ensure mental engagement. Otherwise, it's just watching TV. If it can't be done in class, it makes for great "YouTube homework."
So I put together some questions that could be answered while watching these brief clips.
Chromatophores and Trichromats @ TPT
I had been using an iOS app to mix colors on my iPhone and iPad. But the app ecosystem is lively and active, so old apps die and new apps arise. An app developer named Insight currently offers an iOS app called Color Mixing. It has your standard color addition of primary colors (RGB) as well as color subtraction (CMY). It seems groovy, though I haven't tinkered with it much yet. I'm reluctant to develop an activity around such an app, since it may be gone tomorrow.
If you've got some groovy color stuff that works for you, post about it in the comments.
I added color to my curriculum a few years ago. It began with writing a lab around PhET's "Color Vision" simulation coupled with pocket microscopes. The lab is called "Pixel Peeping" and it's a big eye-opener (!), especially when they look at the phosphors lighting up in yellow.
Next, I wrote an add-on activity called "Fun with Colors!" An interesting exploration of color mixing.
Then I saw this groovy video, and showed it in conjunction with the color activities. Biological pixels!
Science Friday: Where's the Octopus?
Then I saw this wee gem from Steve Mould, and thought to add it, too. How does your brain average red and blue when your green cone is silent?
The Royal Institution: Colour Mixing: The Mystery of Magenta
But I bristle at the notion of just showing a video or asking students to watch a video without having questions attached to ensure mental engagement. Otherwise, it's just watching TV. If it can't be done in class, it makes for great "YouTube homework."
So I put together some questions that could be answered while watching these brief clips.
Chromatophores and Trichromats @ TPT
I had been using an iOS app to mix colors on my iPhone and iPad. But the app ecosystem is lively and active, so old apps die and new apps arise. An app developer named Insight currently offers an iOS app called Color Mixing. It has your standard color addition of primary colors (RGB) as well as color subtraction (CMY). It seems groovy, though I haven't tinkered with it much yet. I'm reluctant to develop an activity around such an app, since it may be gone tomorrow.
If you've got some groovy color stuff that works for you, post about it in the comments.
Sunday, April 08, 2018
Fluorescent Puffin Bills and Tetrachromacy
Serendipity. What a great thing among the scientifically curious.
Ornithologist Jamie Dunning’s serendipity compelled him to shine ultraviolet light on the already decorative bill of a puffin. And he saw something apparently not previously documented in the learned journals.
Birds, those opulent tetrachromats, are apparently up to their colorful shenanigans once again. We humans, humble trichromats that we are, just miss things sometimes. (It’s clearly not just the ability to fly that makes Naomi Hamilton Jealous of the Birds! But I digress.)
Read the story, behold the images, and mention it when you teach about colors and color mixing.
Puffin beaks are fluorescent and we had no idea.
Ornithologist Jamie Dunning’s serendipity compelled him to shine ultraviolet light on the already decorative bill of a puffin. And he saw something apparently not previously documented in the learned journals.
Birds, those opulent tetrachromats, are apparently up to their colorful shenanigans once again. We humans, humble trichromats that we are, just miss things sometimes. (It’s clearly not just the ability to fly that makes Naomi Hamilton Jealous of the Birds! But I digress.)
Read the story, behold the images, and mention it when you teach about colors and color mixing.
Puffin beaks are fluorescent and we had no idea.
Monday, April 02, 2018
Mechanical Universe High School Video Questions
Some of us are old enough to remember physics lectures. I may have even dabbled in that art during the first five years of my career. But its appeal faded as I placed increasing emphasis on more active learning techniques. The closest I get to lecture is guided discussion into a topic.
We spend more time in laboratory, demonstration, and experimental activities these days.
But I do not banish all exposition as an enemy of learning. I outsource that task to the likes of Paul Hewitt (via Conceptual Physics Alive!) and The Mechanical Universe, especially the High School Adaptation.
The High School Adaptation was originally released in oddly-grouped quads. For my purposes, I rearranged the episodes into sets that made more sense to me.
I couldn't show episodes of either series until I had question sets to accompany them. Active engagement in an otherwise passive activity, I suppose. The question sets I wrote for Conceptual Physics Alive! are distributed by Arbor Scientific. (You can get seven sets for free at the link.)
The sets of questions I developed to accompany The Mechanical Universe High School Adaptation episodes is now distributed at Teachers Pay Teachers: The Lessons of Phyz.
When I create a set of video questions for in-class viewing, I try to produce two different worksheets to diminish any wandering eyes tendencies of side-by-side table partners. I use a heavy font to increase legibility in low light since videos are often shown in diminished classroom illumination. The questions are to be answered while the video is playing.
The questions are also varied in type: fill in the blank, multiple choice, matching, and short answer. There are often illustrations involved in the questions. Importantly, these are low-level questions. They are not deep; they do not involve synthesis. They are not prompts for paragraph-length reflections. Their purpose is to keep students connected to the lesson in real time.
Too many video question sets I see strike me as impractical for real-time responses. They shoot for the upper reaches of the Bloom's Taxonomy mountain. I love high-level questions and use them as much as I can. But not during video play. Other question sets are wire-to-wire fill-in-the-blanks from the text of the narration. That's a bit extreme at the other end. I prefer to mix it up a bit while keeping it simple.
In any case, here are the sets of The Mechanical Universe High School Adaptation questions I've posted to TpT.
The Law of Falling Bodies · The Law of Inertia · Newton's Laws · Moving in Circles
Kepler's Laws · The Apple and the Moon · Navigating in Space · Curved Space and Black Holes
Conservation of Energy · Conservation of Momentum · Angular Momentum
Temperature and the Gas Laws · Harmonic Motion · Introduction to Waves
Electric Fields and Forces · Equipotentials and Fields · Potential and Capacitance · The Millikan Experiment
Simple DC Circuits · Magnetic Fields · Electromagnetic Induction · Alternating Current
Wave Nature of Light · Models of the Atom · Wave-Particle Duality
And now the bad news: If you don't already have the High School Adaptation edits of The Mechanical Universe, you can't really get them anymore. Intelecom had the distribution rights once upon a time, but it appears they have since dropped it from their offerings. If you're a card-carrying member of a library that subscribes to the Hoopla media service, you're in luck.
So much for my schemes of early retirement...