I highly recommend the educational activities from SETI; especially their Kepler Mission materials found here. There are NGSS aligned activities arranged by age level. I'm looking into the Transit Tracks activities to link Kepler's equations with the Kepler mission, light and our Universal Gravitation unit.
Within that document SETI describes a demo of the Kepler mission by passing a bead on a string in front of a light bulb in a dark room. There is a note off to the side that says:
Optional: Collect Real Data
If you have a light sensor, computer
with sensor interface,
graphing software, and a computer
display projector, place the
light sensor in the plane of the
planet/ bead orbit and aim sensor
directly at the light. Collect
brightness data and project the
computer plot in real time. Let
the students comment on what
they are observing. Instead of
swinging beads, you may use a
mechanism, known as an orrery,
to model the planets orbiting
their star. Instructions for building
an orrery from LEGO™ parts
may be found on the NASA
Kepler Mission website at
http://kepler.nasa.gov/education/ModelsandSimulations/LegoOrrery/
I don't have Vernier light sensors but I do have the Physics Toolbox Suite on my phone which uses the light sensor already on your phone. The app is free and has many different tools all using the internal properties of your phone. I find myself using it frequently and if I ever get tablets for my classroom I'll be using this much more frequently.
I played around with the idea over the weekend using a dim kid's light and passes my hand in front of it to model a transit. At first I tried a ceiling mounted light but I found that since its a CFL bulb there were small variations in the light that might confuse students. In class I would be using incandescent light bulbs anyway. The kids' dim flashlight had a fairly consistent output and the dips were caused by my hand in front of it in a completely dark room.
I would like to model something smaller than the light source like the bead on a string that SETI suggested. It will also be a good lesson about the difficulties of the mission as students won't see too much of a reduction in light unless the shadow of the bead passes right over the sensor on the phone. I don't have orreries but can challenge students to keep constant period orbits. Perhaps by next year I can develop something super simple like this DIY Orrey.
The nice folks in charge of the @PhysicsToolbox twitter account pointed out this The Physics Teacher article on the subject sing their light sensor for something similar.
After students learn how to read Transit Light Curves from the SETI activity I hope to have them make their own and model the same graph interpreting skills. It will only take one kid with a phone in each group to make this work and I think I'll have that covered.
High school physics education issues as seen by some American teachers: From content standards to critical thinking
Sunday, December 11, 2016
Saturday, December 03, 2016
Roll the dice
Studying the Law of Universal Gravitation can be heavy (ba dum tss) for students. Each year my students push through the long equations and we go without a lab for about a week. That's pretty unusual in my classes and they can feel the change. If a student asks why we aren't doing a lab I usually reply, "Well I can't haul Jupiter in here to measure it so ...."
Practice problems were always difficult for students, more about living by the Order of Operations (PEMDAS) then actually understanding the problem. Some would take one look at that period of revolution equation and say "No, nuh uh, not gonna make me. Nope."
I tried to make them fun by creating word problems. It wasn't just calculating the Force of Gravity between you and Jupiter, "Let's compare that to the Force of Gravity between you and the doctor that delivered you! Jupiter's gravity doesn't affect you and astrology is bunk!" But still going through problems together wasn't engaging students.
A few years ago I had an idea to make our practice calculations into a dice game. One di has problems to solve and the other different planets. There are actually two different planet di so that students can choose. Here is a print ready file, I suggest thicker paper to give it some structure. They take some time to assemble but you can use them for years to come.
The kids loved it. They probably work through more practice problems than they would have if I had just supplied them with certain ones to do and they were very invested in letting chance choose which they would calculate. A new development this year was that they are so used to checking their answers with me while they whiteboard they wanted to know the "answer." That was harder to do as I walked around the room since there were so many variations. I decided to create and project an answer chart in Excel.
Depending on how your school or district is defining "physics" from the NGSS framework you may or may not be finding yourself teaching more Earth & Space Science. We had our own sort of NGSS Draft among Chemistry, Physics and Biology trying to divide up the Earth & Space Science topics. In my district Physics ended up, rightly so I feel, with HS-ESS1-4:
This goes well with HS-PS2-4 about the Law of Universal Gravitation:
I'm still working on adding more of Kepler's Laws into the curriculum, there is an outline here on this Disciplinary Core Idea about it.
Practice problems were always difficult for students, more about living by the Order of Operations (PEMDAS) then actually understanding the problem. Some would take one look at that period of revolution equation and say "No, nuh uh, not gonna make me. Nope."
I tried to make them fun by creating word problems. It wasn't just calculating the Force of Gravity between you and Jupiter, "Let's compare that to the Force of Gravity between you and the doctor that delivered you! Jupiter's gravity doesn't affect you and astrology is bunk!" But still going through problems together wasn't engaging students.
Your birth Mass (kg) | Jupiter & Doctor (kg) | closest distance (m) | Universal Gravitational Constant | Force of Gravity (N) |
4 | 1.90E+27 | 588000000000 | 6.67E-11 | 1.47E-06 |
4 | 100 | 0.1 | 6.67E-11 | 2.67E-06 |
The kids loved it. They probably work through more practice problems than they would have if I had just supplied them with certain ones to do and they were very invested in letting chance choose which they would calculate. A new development this year was that they are so used to checking their answers with me while they whiteboard they wanted to know the "answer." That was harder to do as I walked around the room since there were so many variations. I decided to create and project an answer chart in Excel.
Depending on how your school or district is defining "physics" from the NGSS framework you may or may not be finding yourself teaching more Earth & Space Science. We had our own sort of NGSS Draft among Chemistry, Physics and Biology trying to divide up the Earth & Space Science topics. In my district Physics ended up, rightly so I feel, with HS-ESS1-4:
HS-ESS1-4. | Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.[Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.] |
---|
HS-PS2-4. | Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects. [Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields.] [Assessment Boundary: Assessment is limited to systems with two objects.] |
---|